Abstract

Paraneoplastic pemphigus (PNP) is an autoimmune blistering disease associated with lymphoproliferative neoplasms and characterized by antibodies against plakins and desmoglein 3 (Dsg3). Anti-Dsg3 antibodies have a primary role in blister formation in PNP. In this study, we used phage display to clone monoclonal anti-Dsg3 antibodies from a PNP patient to further characterize their pathogenicity. We isolated 20 unique Dsg3-reactive mAbs, which we classified into four groups according to the heavy-chain complementarity-determining region 3 (CDR3) region. Genetic analyses demonstrated that three antibody groups used the VH1-46 gene (18 clones) and one group used the VH1-02 gene (2 clones). The results of an in vitro keratinocyte dissociation assay and a human skin organ culture injection assay showed that three antibodies displayed pathogenic activity in blister formation with different potencies. Epitope mapping using domain-swapped Dsg3/Dsg2 showed that these pathogenic mAbs bound Ca(2+)-dependent conformational epitopes in the middle portion of the extracellular region of Dsg3 (EC2 and EC3 domains), in contrast to most previously characterized pathogenic pemphigus vulgaris antibodies, which bound to the EC1 domain of Dsg3. These mAbs reflect the unique polyclonal nature of anti-Dsg3 antibodies in PNP and represent an important tool for detailing the pathophysiological mechanisms of blister formation in PNP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.