Abstract

ETV6/RUNX1 (E/R) is the most common fusion gene in childhood acute lymphoblastic leukemia (ALL). Multiple lines of evidence imply a “two-hit” model for the molecular pathogenesis of E/R-positive ALL, whereby E/R rearrangement is followed by a series of secondary mutations that trigger overt leukemia. The cellular framework in which E/R arises and the maintenance of a pre-leukemic condition by E/R are fundamental to the mechanism that underlies leukemogenesis. Accordingly, a variety of studies have focused on the relationship between the clones giving rise to the primary and recurrent E/R-positive ALL. We review here the most recent insights into the pathogenic mechanisms underlying E/R-positive ALL, as well as the molecular abnormalities prevailing at relapse.

Highlights

  • Acute lymphoblastic leukemia (ALL), a malignancy characterized by clonal proliferation of arrested immature blood cell precursors, progresses rapidly and often appears without an obvious prodrome [1]

  • In pediatric B-cell acute lymphoblastic leukemia (ALL), the most frequent chromosomal lesion is t(12;21)(p13;q22), which results in its molecular genetic counterpart, the ETV6/RUNX1 fusion gene [4, 5]

  • We review here some of the major findings that highlight the impact of the E/R fusion gene on childhood ALL at initiation and relapse

Read more

Summary

Introduction

Acute lymphoblastic leukemia (ALL), a malignancy characterized by clonal proliferation of arrested immature blood cell precursors (blasts), progresses rapidly and often appears without an obvious prodrome [1]. In pediatric B-cell acute lymphoblastic leukemia (ALL), the most frequent chromosomal lesion is t(12;21)(p13;q22), which results in its molecular genetic counterpart, the ETV6/RUNX1 ( known as TEL/AML1) fusion gene [4, 5]. Genome-wide, high resolution CNAs www.impactjournals.com/oncotarget analyses have revealed an increasing number of putative causative submicroscopic changes in diverse genes such as CD200, BTLA, TBL1XR1, GLRX2, NR3C2, NR3C1, TCF3, EBF1, LEF1, IKZF1, CCNC, ARMC2, BTG1, SPANXB, TP63, PTPRJ, ATF7IP, and MGA [13, 36, 42, 47, 52].

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.