Abstract

Nanomaterials show great potential for the treatment of bacterial infections, but their effects remain limited by low antibacterial efficiency and immune clearance. Facet-dependent nanozymes coated with pathogen receptor membranes were fabricated, providing an approach for producing superphotothermal antibacterial nanomaterials with high biocompatibility and low immune clearance. (100)- and (112)-Faceted CuFeSe2 presented excellent photothermal conversion efficiency (46%). However, the peroxidase-like activity of (100)-faceted CuFeSe2 enhanced the decomposition of H2O2 to hydroxyl radicals (•OH) and was markedly greater than that of (112)-faceted CuFeSe2, with nearly 100% of Staphylococcus aureus being killed under near-infrared (NIR) irradiation. Importantly, bacteria-pretreated immune membranes (i.e., pathogen receptor membranes) coated with CuFeSe2 exhibited superior S. aureus-binding ability, presented obvious immune-evading capability, and resulted in targeted delivery to infected sites. As a proof-of-principle demonstration, these findings hold promise for the use of pathogen receptor membrane-coated facet-dependent nanomaterials in clinical applications and the treatment of bacterial infections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.