Abstract

A path-integral approach to real-time quantum dynamics is presented which is suitable to treat the dynamics of vibronic coupling or spin boson models. In these models the vibrational dynamics is nonseparable as a consequence of the electronic inter-state coupling. The sum over all possible paths in electronic-state space generated by the usual Trotter procedure is expressed in terms of single-mode averages over classes of paths and statistical mode correlations. The averages for classes of a given length can be calculated iteratively from averages over shorter paths. This expansion is formally exact and finite for a finite number of modes. Usually only a limited number of terms has to be evaluated in order to obtain converged results. The scaling of the computational effort with respect to the number of time steps and the number of modes is given by a low-order power law, depending on the chosen class structure and the order of the expansion. The usual time-dependent wave-packet propagation and the full path enumeration, which exhibit an exponential scaling behavior with respect to either the number of modes or the number of time steps, can be considered as opposite limiting cases of the correlation expansion (CE) of the path integral. The convergence of the CE is tested by application to a two-state four-mode model representing S1-S2 vibronic coupling in pyrazine, for which exact references (time-dependent correlation functions) are available. The potential of the CE approximation for the treatment of multi-mode problems is demonstrated by application to an extended 24-mode vibronic-coupling model. This model is suitable to provide a microscopic description of ultrafast optical dephasing processes in large molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.