Abstract

The non-Abelian chiral anomaly for a fermion interacting with an external vector field in any even dimension and the conformal anomaly, in the limit of flat space–time, for a self-interacting scalar field are shown to be independent of temperature using a simple path-integral approach that employs dimensional regularization. The chiral anomaly is used as an example to show that the methods used to study the dimensionally regularized anomaly at finite temperature are readily transferable to the case of ζ-function regularization. The conformal anomaly in (super) string theory at finite temperature is briefly discussed in the light of known results. Some subtleties concerning the use of infrared cutoffs in a dimensionally regularized approach to the computation of the one-loop effective action at finite temperature are considered in an appendix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.