Abstract
Spatial navigation is a universal behavior that varies depending on goals, experience and available sensory stimuli. Spatial navigational tasks are routinely used to study learning, memory and goal-directed behavior, in both animals and humans. One popular paradigm for testing spatial memory is the Morris water maze, where subjects learn the location of a hidden platform that offers escape from a pool of water. Researchers typically express learning as a function of the latency to escape, though this reveals little about the underlying navigational strategies. Recently, a number of studies have begun to classify water maze search strategies in order to clarify the precise spatial and mnemonic functions of different brain regions, and to identify which aspects of spatial memory are disrupted in disease models. However, despite their usefulness, strategy analyses have not been widely adopted due to the lack of software to automate analyses. To address this need we developed Pathfinder, an open source application for analyzing spatial navigation behaviors. In a representative dataset, we show that Pathfinder effectively characterizes the development of highly-specific spatial search strategies as male and female mice learn a standard spatial water maze. Pathfinder can read data files from commercially- and freely-available software packages, is optimized for classifying search strategies in water maze paradigms, and can also be used to analyze 2D navigation by other species, and in other tasks, as long as timestamped xy coordinates are available. Pathfinder is simple to use, can automatically determine pool and platform geometry, generates heat maps, analyzes navigation with respect to multiple goal locations, and can be updated to accommodate future developments in spatial behavioral analyses. Given these features, Pathfinder may be a useful tool for studying how navigational strategies are regulated by the environment, depend on specific neural circuits, and are altered by pathology.
Highlights
All living organisms move throughout space to survive
There is a diversity of spatial behaviors that depend on numerous factors such as anxiety[1,2], learning[3], and the nature and pattern of stimuli that predict goals[4,5,6]
We focused on acquisition and reversal phases since they are the main focus of our subsequent strategy analyses
Summary
All living organisms move throughout space to survive. Amongst mammals, there is a diversity of spatial behaviors that depend on numerous factors such as anxiety[1,2], learning[3], and the nature and pattern of stimuli that predict goals[4,5,6]. Given rodents’ natural propensity to explore stimuli and environments, an array of rodent navigational tasks have been developed to investigate how various brain regions interact to control goaldirect behavior[7]. This has routinely been conducted using fixed-trajectory mazes such as the T-maze or radial maze. While these dry maze paradigms offer the convenience of fixed choice points that reduce ambiguity associated with classifying decisions and navigational responses, they cannot be used to study patterns of exploration in open environments. The vast majority of studies have since used escape latency or path length as primary measures of spatial learning. While latency and path length measures are convenient, they discard a rich amount of behavioral data
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.