Abstract

Synthesizing large-scale phylogenetic trees is a fundamental problem in evolutionary biology. Median tree problems have evolved as a powerful tool to reconstruct such trees. Given a tree collection, these problems seek a median tree under some problem-specific tree distance. Here, we introduce the median tree problem for the classical path-difference distance. We prove that this problem is NP-hard, and describe a fast local search heuristic that is based on solving a local search problem exactly. For an effective heuristic we devise a time efficient algorithm for this problem that improves on the best-know (naive) solution by a factor of n, where n is the size of the input trees. Finally, we demonstrate the performance of our heuristic in a comparative study with other commonly used methods that synthesize species trees using published empirical data sets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.