Abstract

In traffic research, management, and planning a number of path-based analyses are heavily used, e.g., for computing turn-times, evaluating green waves, or studying traffic flow. These analyses require retrieving the trajectories that follow the full path being analyzed. Existing path queries cannot sufficiently support such path-based analyses because they retrieve all trajectories that touch any edge in the path. In this paper, we define and formalize the strict path query. This is a novel query type tailored to support path-based analysis, where trajectories must follow all edges in the path. To efficiently support strict path queries, we present a novel NET work-constrained TRAjectory index (NETTRA). This index enables very efficient retrieval of trajectories that follow a specific path, i.e., strict path queries. NETTRA uses a new path encoding scheme that can determine if a trajectory follows a specific path by only retrieving data from the first and last edge in the path. To correctly answer strict path queries existing network-constrained trajectory indexes must retrieve data from all edges in the path. An extensive performance study of NETTRA using a very large real-world trajectory data set, consisting of 1.7 million trajectories (941 million GPS records) and a road network with 1.3 million edges, shows a speed-up of two orders of magnitude compared to state-of-the-art trajectory indexes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call