Abstract

Path-wise test data generation is generally considered an important problem in the automation of software testing. In essence, it is a constraint optimization problem, which is often solved by search methods such as backtracking algorithms. In this paper, the backtracking algorithm branch and bound and state space search in artificial intelligence are introduced to tackle the problem of path-wise test data generation. The former is utilized to explore the space of potential solutions and the latter is adopted to construct the search tree dynamically. Heuristics are employed in the look-ahead stage of the search. Dynamic variable ordering is presented with a heuristic rule to break ties, values of a variable are determined by the monotonicity analysis on branching conditions, and maintaining path consistency is achieved through analysis on the result of interval arithmetic. An optimization method is also proposed to reduce the search space. The results of empirical experiments show that the search is conducted in a basically backtrack-free manner, which ensures both test data generation with promising performance and its excellence over some currently existing static and dynamic methods in terms of coverage. The results also demonstrate that the proposed method is applicable in engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.