Abstract

Laser action at 1315 nm on the I(/sup 2/P/sub 1/2/)/spl rarr/I(/sup 2/P/sub 3/2/) transition of atomic iodine is conventionally obtained by a near-resonant energy transfer from O/sub 2/(a/sup 1//spl Delta/) which is produced using wet-solution chemistry. The system difficulties of chemically producing O/sub 2/(a/sup 1//spl Delta/) have motivated investigations into gas phase methods to produce O/sub 2/(a/sup 1//spl Delta/) using low-pressure electric discharges. We report on the path that led to the measurement of positive gain on the 1315-nm transition of atomic iodine where the O/sub 2/(a/sup 1//spl Delta/) was produced in a flowing electric discharge. Atomic oxygen was found to play both positive and deleterious roles in this system, and as such the excess atomic oxygen was scavenged by NO/sub 2/ to minimize the deleterious effects. The discharge production of O/sub 2/(a/sup 1//spl Delta/) was enhanced by the addition of a small proportion of NO to lower the ionization threshold of the gas mixture. The electric discharge was upstream of a continuously flowing supersonic cavity, which was employed to lower the temperature of the flow and shift the equilibrium of atomic iodine more in favor of the I(/sup 2/P/sub 1/2/) state. A tunable diode laser system capable of scanning the entire line shape of the (3,4) hyperfine transition of iodine provided the gain measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call