Abstract

The state transfer of closed quantum systems in the interaction picture is studied. The convergent problem encountered in designing control laws based on the Lyapunov method is solved by the well constructed observable operator and a path programming control strategy. It is proved that the condition for the target state being a stable point in the Lyapunov's sense is the coherent vectors of the observable operator and the target state must be in opposite directions. For the local optimisation limitation of the Lyapunov-based method, the path programming control strategy is proposed, which is used to change the distribution of stationary points or choose a transition path by appropriately selecting intermediate target states. Comparative numerical system simulation experiments are implemented on a four-level quantum system and the experimental results are analysed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.