Abstract

Potential-field approaches based on harmonic functions have good path planning properties, although the explicit knowledge of the robot’s Configuration Space is required. To overcome this drawback, a combination with a random sampling scheme is proposed. Harmonic functions are computed over a 2 d-tree decomposition of a d-dimensional Configuration Space that is obtained with a probabilistic cell decomposition (sampling and classification). Cell sampling is biased towards the more promising regions by using the harmonic function values. Cell classification is performed by evaluating a set of configurations of the cell obtained with a deterministic sampling sequence that provides a good uniform and incremental coverage of the cell. The proposed planning framework opens the use of harmonic functions to higher dimensional C-spaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.