Abstract

With the upgrading of manufacturing production lines and innovations in information technology, logistics robot technology applied in factories is maturing. Rail-mounted logistics robots are suitable for precise material distribution in large production workshops with fixed routes and over long distances. However, designing an efficient path-planning algorithm is the key to realizing high efficiency in multi-robot system operations with rail logistics. Therefore, this paper proposes an improved Dijkstra algorithm that introduces real-time node occupancy and a time window conflict judgment model for global path planning and conflict coordination in multi-robot systems. More specifically, the introduction of real-time node occupancy can determine the shortest feasible routes for each task, and the introduction of the time window conflict judgment model can avoid the route conflict problem in the execution of multiple tasks, planning the shortest route without conflict. For the robot UBW positioning module, a Chan algorithm based on TDOA is proposed to realize the accurate positioning of rail-mounted logistics robots during their operation. Compared with the traditional Dijkstra algorithm, the results show that the algorithm proposed herein can plan a conflict-free and better path and dynamically adjust the on-orbit conflict in real time to avoid track congestion and efficiently complete multiple distribution tasks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.