Abstract

Safety is the premise of the stable and sustainable development of the chemical industry, safety accidents will not only cause casualties and economic losses, but also cause panic among workers and nearby residents. Robot safety inspection based on the fire risk level in a chemical industrial park can effectively reduce process accident losses and can even prevent accidents. The optimal inspection path is an important support for patrol efficiency, therefore, in this study, the fire risk level of each location to be inspected, which is obtained by the electrostatic discharge algorithm (ESDA)–nonparallel support vector machine evaluation model, is combined with the optimisation of the inspection path; that is, the fire risk level is used to guide the inspection path planning. The inspection path planning problem is a typical travelling salesman problem (TSP). The discrete ESDA (DESDA), based on the ESDA, is proposed. In view of the shortcomings of the long convergence time and ease of falling into the local optimum of the DESDA, further improvements are proposed in the form of the IDESDA, in which the greedy algorithm is used for the initial population, the 2-opt algorithm is applied to generate new solutions, and the elite set is joined to provide the best segment for jumping out of the local optimum. In the experiments, 11 public calculation examples were used to verify the algorithm performance. The IDESDA exhibited higher accuracy and better stability when solving the TSP. Its application to chemical industrial parks can effectively solve the path optimisation problem of patrol robots.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call