Abstract

We present the path-planning techniques of the fire-escaping system for intelligent building, and use multiple mobile robots to present the experimental scenario. The fire-escaping system contains a supervised computer, an experimental platform, some fire-detection robots and some navigation robots. The mobile robot has the shape of a cylinder, and its diameter, height and weight are 10 cm, 15 cm and 1.5 kg, respectively. The mobile robot contains a controller module, two DC servomotors (including drivers), three IR sensor modules, a voice module and a wireless RF module. The controller of the mobile robot acquires the detection signals from reflective IR sensors through I/O pins and receives the command from the supervised computer via wireless RF interface. The fire-detection robot carries the flame sensor to detect fire sources moving on the grid-based experiment platform, and calculates the more safety escaping path using piecewise cubic Bezier curve on all probability escaping motion paths. Then the user interface uses A* searching algorithm to program escaping motion path to approach the Bezier curve on the grid-based platform. The navigation robot guides people moving to the safety area or exit door using the programmed escaping motion path. In the experimental results, the supervised computer programs the escaping paths using the proposed algorithms and presents movement scenario using the multiple smart mobile robots on the experimental platform. In the experimental scenario, the user interface transmits the motion command to the mobile robots moving on the grid-based platform, and locates the positions of fire sources by the fire-detection robots. The navigation robot guides people leaving the fire sources using the low-risk escaping motion path and moves to the exit door.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call