Abstract

Multi-agent systems in cluttered environments require path planning that not only prevents collisions with static obstacles, but also safely coordinates the motion of many agents. The challenge of multi-agent path finding becomes even more difficult when the agents experience uncertainty in their pose. In this work, we develop a multi-agent path planner that considers uncertainty, called uncertainty M* (UM*), which is based on a prior multi-agent path approach called M*. UM* plans a path through the belief space for each individual agent and then uses a strategy similar to M* that coordinates only agents that are “likely” to collide. This approach has the same scalability advantages as M*. We then introduce an extension called Permuted UM* (PUM*) that uses randomized restarts to enhance performance. We finish by presenting a belief space representation appropriate for multi-agent path planning with uncertainty and validate the performance of UM* and PUM* in simulation and mixed-reality experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.