Abstract

This paper presents a deep reinforcement learning-based path planning algorithm for the multi-arm robot manipulator when there are both fixed and moving obstacles in the workspace. Considering the problem properties such as high dimensionality and continuous action, the proposed algorithm employs the SAC (soft actor-critic). Moreover, in order to predict explicitly the future position of the moving obstacle, LSTM (long short-term memory) is used. The SAC-based path planning algorithm is developed using the LSTM. In order to show the performance of the proposed algorithm, simulation results using GAZEBO and experimental results using real manipulators are presented. The simulation and experiment results show that the success ratio of path generation for arbitrary starting and goal points converges to 100%. It is also confirmed that the LSTM successfully predicts the future position of the obstacle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.