Abstract

One of most worked issues in the last years in robotics has been the study of strategies to path planning for mobile robots in static and observable conditions. This is an open problem without pre-defined rules (non-heuristic), which needs to measure the state of the environment, finds useful information, and uses an algorithm to select the best path. This paper proposes a simple and efficient geometric path planning strategy supported in digital image processing. The image of the environment is processed in order to identify obstacles, and thus the free space for navigation. Then, using visibility graphs, the possible navigation paths guided by the vertices of obstacles are produced. Finally the A* algorithm is used to find a best possible path. The alternative proposed is evaluated by simulation on a large set of test environments, showing in all cases its ability to find a free collision plausible path.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.