Abstract

PurposeTwo and one half‐dimensional (2.5D) grid maps are useful for navigation in outdoor environment or on non‐flat surface. However, little attention has been given to how to find an optimal path in a 2.5D grid map. The purpose of this paper is to develop a path‐planning method in a 2.5D grid map, which aims to provide an efficient solution to robot path planning no matter whether the robot is equipped with the prior knowledge of the environment.Design/methodology/approachA 2.5D grid representation is proposed to model non‐flat surface for mobile robots. According to the graph extracted from the 2.5D grid map, an improved searching approach derived from A* algorithm is presented for the shortest path planning. With reasonable assumption, the approach is improved for the path planning in unknown environment.FindingsIt is confirmed by experiments that the proposed planning approach provide a solution to the problem of optimal path planning in 2.5 grid maps. Furthermore, the experiment results demonstrate that our 2.5D D* method leads to more efficient dynamic path planning for navigation in unknown environment.Originality/valueThis paper proposes a path‐planning approach in a 2.5D grid map which is used to represent a non‐flat surface. The approach is capable of efficient navigation no matter whether the global environmental information is available at the beginning of exploration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call