Abstract

Path planning is a key issue for safe navigation of inland ferries. With the development of ship intelligence, how to enhance the decision–support system of a ferry in a complex navigation environment is one of the key issues. The inland ferries need to cross the channel frequently and, thus, risky encounters with target ships in the waterway are more frequent, so they need an intelligent decision–support system that can deal with complex situations. In this study, a reinforced deep learning method is proposed for path planning of inland ferries during crossing of the waterways. In the study, the state space, action space and reward function of the Deep Q-network (DQN) model are designed and improved to establish an autonomous navigation method for ferries considering both economy and safety. The DQN model also takes into account the crossing behavior, navigation economy and safety. Finally, the model is applied to case studies to verify its effectiveness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.