Abstract

In order to overcome a large variety of run-time constraints, robots are being designed to be more resourceful by incorporating more sensory and motor options for any given task. The added flexibility provides a basis for dexterous problem solving, but challenges planners by increasing the complexity of search. Moreover, the cost of functionally equivalent options can vary dramatically. In the worst case, naive approaches to planning avoid expensive actions until inexpensive options are explored exhaustively leading to poor overall search performance. We present a dexterous robot that introduces multiple types of locomotor actions with significant differences in cost and situational value and apply standard search techniques to demonstrate the additional challenges that arise in the context of dexterous mobility. Results highlight incentives, opportunities, and impact for overcoming these challenges. Additionally, we present a prototype for a path planner that uses environmental features to define an efficient set of subgoals for dexterous motion planning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.