Abstract

Path planning for autonomous vehicles in dynamic environments is an important but challenging problem, due to the constraints of vehicle dynamics and existence of surrounding vehicles. Typical trajectories of vehicles involve different modes of maneuvers, including lane keeping, lane change, ramp merging, and intersection crossing. There exist prior arts using the rule-based high-level decision making approaches to decide the mode switching. Instead of using explicit rules, we propose a unified path planning approach using Model Predictive Control (MPC), which automatically decides the mode of maneuvers. To ensure safety, we model surrounding vehicles as polygons and develop a type of constraints in MPC to enforce the collision avoidance between the ego vehicle and surrounding vehicles. To achieve comfortable and natural maneuvers, we include a lane-associated potential field in the objective function of the MPC. We have simulated the proposed method in different test scenarios and the results demonstrate the effectiveness of the proposed approach in automatically generating reasonable maneuvers while guaranteeing the safety of the autonomous vehicle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.