Abstract
SUMMARYThis paper presents a new solution approach for managing the motion of a fleet of autonomous vehicles (AVs) in indoor factory environments. AVs are requested to serve a number of workstations (WS) (following a specified desired production plan for materials requirements) while taking into account the safe movement (collisions avoidance) in the shop floor as well as time duration and energy resources. The proposed approach is based on the Bump-Surface concept to represent the 2D environment through a single mathematical entity. The solution of the combined problem of path planning and task scheduling is searched on a higher-dimension B-surface (in our case 3D) in such a way that its inverse image into the robot environment satisfies the given objectives and constraints. Then, a modified Genetic Algorithm (GA) is used to search for a near-optimum solution. The objective of the fleet coordination consists of determining the best feasible paths for the AVs so that all the WS are served at the lowest possible cost. The efficiency of the developed method is investigated and discussed through characteristic simulated experiments concerning a variety of operating environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.