Abstract

During their task accomplishment, autonomous unmanned aerial vehicles are facing more and more threats coming from both ground and air. In such adversarial environments, with no a priori information about the threats, a flying robot in charge with surveilling a specified 3D sector must perform its tasks by evolving on misleading and unpredictable trajectories to cope with enemy entities. In our view, the chaotic dynamics can be the cornerstone in designing unpredictable paths for such missions, even though this solution was not exploited until now by researchers in the 3D context. This paper addresses the flight path-planning issue for surveilling a given volume in adversarial conditions by proposing a proficient approach that uses the chaotic behaviour exhibited by the 3D Arnold’s cat map. By knowing the exact location of the volume under surveillance before take-off, the flying robot will generate the successive chaotic waypoints only with onboard resources, in an efficient manner. The method is validated by simulation in a realistic scenario using a detailed Simulink model for the X-4 Flyer quadcopter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.