Abstract
As a generalization of the Hiai–Petz geometries, we discuss two types of them where the geodesics are the quasi-arithmetic means and the quasi-geometric means respectively. Each derivative of such a geodesic might determine a new relative operator entropy. Also in these cases, the Finsler metric can be induced by each unitarily invariant norm. If the norm is strictly convex, then the geodesic is the shortest. We also give examples of the shortest paths which are not the geodesics when the Finsler metrics are induced by the Ky Fan k -norms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.