Abstract
We study causal diamonds in Minkowski, Schwarzschild, (anti) de Sitter, and Schwarzschild-de Sitter spacetimes using Euclidean methods. The null boundaries of causal diamonds are shown to map to isolated punctures in the Euclidean continuation of the parent manifold. Boundary terms around these punctures decrease the Euclidean action by $A_\diamond/4$, where $A_\diamond$ is the area of the holographic screen around the diamond. We identify these boundary contributions with the maximal entropy of gravitational degrees of freedom associated with the diamond.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.