Abstract
We present a finite temperature quantum mechanical study of the dynamical and structural properties of small (4)He(N)-CO(2) clusters (N< or =17) using a path integral Monte Carlo (PIMC) method. The simulations were based on a He-CO(2) interaction potential with explicit dependence on the asymmetric stretch of the CO(2) molecule obtained at the CCSD(T) level. The shift of the CO(2) antisymmetric stretching (nu(3)) band origin and effective rotational constant were calculated as a function of the cluster size. In excellent agreement with experimental observations, the CO(2) vibrational band origin shifts and rotational constant show a turnaround near N=5, corresponding to a donut structure with the He atoms in equatorial positions of the linear dopant molecule.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.