Abstract

To describe the tunneling dynamics of a stack of two-dimensional fermionic superfluids in an optical potential, we derive an effective action functional from a path integral treatment. This effective action leads, in the saddle point approximation, to equations of motion for the density and the phase of the superfluid Fermi gas in each layer. In the strong coupling limit (where bosonic molecules are formed) these equations reduce to a discrete nonlinear Schrodinger equation, where the molecular tunneling amplitude is reduced for large binding energies. In the weak coupling (BCS) regime, we study the evolution of the stacked superfluids and derive an approximate analytical expression for the Josephson oscillation frequency in an external harmonic potential. Both in the weak and intermediate coupling regimes the detection of the Josephson oscillations described by our path integral treatment constitutes experimental evidence for the fermionic superfluid regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.