Abstract
The path integral for space-time noncommutative theory is formulated by means of Schwinger's action principle which is based on the equations of motion and a suitable ansatz of asymptotic conditions. The resulting path integral has essentially the same physical basis as the Yang-Feldman formulation. It is first shown that higher derivative theories are neatly dealt with by the path integral formulation, and the underlying canonical structure is recovered by the Bjorken-Johnson-Low (BJL) prescription from correlation functions defined by the path integral. A simple theory which is non-local in time is then analyzed for an illustration of the complications related to quantization, unitarity and positive energy conditions. From the view point of BJL prescription, the naive quantization in the interaction picture is justified for space-time noncommutative theory but not for the simple theory non-local in time. We finally show that the perturbative unitarity and the positive energy condition, in the sense that only the positive energy flows in the positive time direction for any fixed time-slice in space-time, are not simultaneously satisfied for space-time noncommutative theory by the known methods of quantization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.