Abstract

An approximate approach to quantum vibrational dynamics, "Brownian chain molecular dynamics (BCMD)," is proposed to alleviate the chain resonance and curvature problems in the imaginary time-based path integral (PI) simulation. Here the non-centroid velocity is randomized at each step when solving the equation of motion of path integral molecular dynamics. This leads to a combination of the Newton equation and the overdamped Langevin equation for the centroid and non-centroid variables, respectively. BCMD shares the basic properties of other PI approaches such as centroid and ring polymer molecular dynamics: It gives the correct Kubo-transformed correlation function at short times, conserves the time symmetry, has the correct high-temperature/classical limits, gives exactly the position and velocity autocorrelations of harmonic oscillator systems, and does not have the zero-point leakage problem. Numerical tests were done on simple molecular models and liquid water. On-the-fly ab initio BCMD simulations were performed for the protonated water cluster, , and its isotopologue, .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call