Abstract
The complex dynamics of an increasing number of systems is attributed to the emergence of a rugged energy landscape with an exponential number of metastable states. To develop this picture into a predictive dynamical theory, I discuss how to compute the exponentially small probability of a jump from one metastable state to another. This is expressed as a path integral that can be evaluated by saddle-point methods in mean-field models, leading to a boundary value problem. The resulting dynamical equations are solved numerically by means of a Newton-Krylov algorithm in the paradigmatic spherical $p$-spin glass model that is invoked in diverse contexts from supercooled liquids to machine-learning algorithms. I discuss the solutions in the asymptotic regime of large times and the physical implications on the nature of the ergodicity-restoring processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.