Abstract
AbstractWe present a new method for the numerical calculation of canonical reaction rate constants in complex molecular systems, which is based on a path integral formulation of the flux–flux correlation function. Central is the partitioning of the total system into a relevant part coupled to a dual bath. The latter consists of two parts: First, there is a set of strongly coupled harmonic modes, describing, for example, intramolecular degrees of freedom. They are treated on the basis of a reaction surface Hamiltonian approach. Second, there is a set of bath modes mimicking an unspecific environment modeled by means of a continuous spectral density. After deriving general equations expressing the canonical rate constant in terms of appropriate influence functionals, several approximations are introduced to provide an efficient numerical implementation. Results for an initial application to the H‐transfer in 6‐aminofulvene‐1‐aldimine are discussed. © 2011 Wiley Periodicals, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.