Abstract

We study the heat statistics of a quantum Brownian motion described by the Caldeira-Leggett model. By using the path integral approach, we introduce a concept of the quantum heat functional along every pair of Feynman paths. This approach has the advantage of improving our understanding about heat in quantum systems. First, we demonstrate the microscopic reversibility of the system by connecting the heat functional to the forward and time-reversed probabilities. Second, we analytically prove the quantum-classical correspondence of the heat functional and their statistics, which allows us to obtain better intuitions about the difference between classical and quantum heat.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.