Abstract

In this paper we construct a path integral formulation of quantum mechanics on noncommutative phase-space. We first map the system to an equivalent system on the noncommutative plane. Then by applying the formalism of representing a quantum system in the space of Hilbert-Schmidt operators acting on noncommutative configuration space, the path integral action of a particle is derived. It is observed that the action has a similar form to that of a particle in a magnetic field in the noncommutative plane. From this action the energy spectrum is obtained for the free particle and the harmonic-oscillator potential. We also show that the nonlocal nature (in time) of the action yields a second-class constrained system from which the noncommutative Heisenberg algebra can be recovered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.