Abstract

Features of path dependent energy transfer in a dual-ring light-harvesting (LH2) complexes (B850) system have been examined in detail systematically. The Frenkel-Dirac time dependent variational method with the Davydov D1 Ansatz is employed with detailed evolution of polaron dynamics in real space readily obtained. It is found that the phase of the transmission amplitude through the LH2 complexes plays an important role in constructing the coherent excitonic energy transfer. It is also found that the symmetry breaking caused by the dimerization of bacteriochlorophylls and coherence or correlation between two rings will be conducive in enhancing the exciton transfer efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.