Abstract

The use of unmanned underwater vehicles is steadily increasing for a variety of applications such as mapping, monitoring, inspection and intervention within several research fields and industries, e.g., oceanography, marine biology, military, and oil and gas. Particularly interesting types of unmanned underwater vehicles are bio-inspired robots such as underwater snake robots (USRs). Due to their flexible and slender body, these versatile robots are highly maneuverable and have better access capabilities than more conventional remotely operated vehicles (ROVs). Moreover, the long and slender body allows for energy-efficient transit over long distances similar to torpedo-shaped autonomous underwater vehicles (AUVs). In addition, USRs are capable of performing light intervention tasks, thereby providing intervention capabilities which exceed those of AUVs and inspection class ROVs. USRs may also propel themselves using energy-efficient motion patterns inspired by their biological counterparts. They can thereby increase the propulsion efficiency during transit and maneuvering, which is among the great challenges for autonomous underwater vehicles. In this paper, a control system for path following, and algorithms for obstacle detection and avoidance, are presented for a USR with thrusters attached at the tail module. The position of the obstacles is detected using a single camera in the head module of the USR and a developed computer vision algorithm. For the proposed control concept the robot joints are used for directional control while the thrusters are used for forward propulsion. The USR circumvents obstacles by following a circular path around them before converging back to the main straight line path when this is safe. Experimental results that validate the proposed methods are also presented.

Highlights

  • Through millions of years of evolution, sea snakes, eels and fish have developed highly efficient motion for propulsion and locomotion

  • Initial experiments were performed to obtain the necessary mapping from the thruster inputs uc to thruster forces Ft for the underwater snake robots (USRs), and the results prove that the relationship is quite linear (Kelasidi et al, 2016b)

  • USRs have a multitude of essential qualities for autonomous underwater operations, such as efficient locomotion, flexible bodies and the possibility to perform intervention tasks

Read more

Summary

Introduction

Through millions of years of evolution, sea snakes, eels and fish have developed highly efficient motion for propulsion and locomotion. These creatures are able to rapidly change direction in a highly efficient manner (Lighthill, 1970, 1975). Remotely operated vehicles (ROVs) have been extensively used for subsea inspection, maintenance, and repair operations in the oil and gas industry (Christ and Wernli, 2013). These vehicles rely on being operated by a highly trained human in the loop. Detailed discussions on different underwater robotic systems such as ROVs, AUVs and bioinspired robotic systems can be found in Kelasidi et al (2016a) and Kelasidi et al (2017b)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call