Abstract

A new type of path-following method has been developed to steer marine surface vehicles along desired paths. Path-following is achieved by a new hyperbolic guidance law for straight-line paths and a backstepping control law for curved paths. An optimal controller has been improved for heading control, based on linear quadratic regulator (LQR) theory with nonlinear feedback control techniques. The control algorithm performance is validated by simulation and comparison against the requirements of International Standard IEC62065. Deviations are within the allowable range of the standard. In addition, the experimental results show that the proposed method has higher control accuracy.

Highlights

  • International Standard IEC62065 is used to test the performance of the path-following control algorithm presented in this paper

  • A new practical guidance and control algorithm vehicles is introduced in path-following control

  • For curved path-following in for themarine transition between two adjacent straight-line paths, paper improves the reverse stepping the controller to this paper

Read more

Summary

Introduction

Autopilot is the main equipment for ship motion control; it controls the ship’s course without the participation of the helmsman [1]. The ship follows the target route automatically, which can effectively reduce ship operating costs [2]. This paper presents a new method for ship track control. The goal of the control system is to follow a preset route with good anti-interference ability [3]. Path-following control systems for marine vehicles are usually constructed as three independent blocks: guidance, navigation and control [4]. Guidance is the action or the system that continuously computes the reference position, velocity and acceleration of the vehicle to be used by the control system [5]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call