Abstract

Markovian models based on the stochastic master equation are often encountered in single molecule dynamics, reaction networks, and nonequilibrium problems in chemistry, physics, and biology. An efficient and convenient method to simulate these systems is the kinetic Monte Carlo algorithm which generates continuous-time stochastic trajectories. We discuss an alternative simulation method based on sampling of stochastic paths. Utilizing known probabilities of stochastic paths, it is possible to apply Metropolis Monte Carlo in path space to generate a desired ensemble of stochastic paths. The method is a generalization of the path sampling idea to stochastic dynamics, and is especially suited for the analysis of rare paths which are not often produced in the standard kinetic Monte Carlo procedure. Two generic examples are presented to illustrate the methodology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.