Abstract
In this work we consider extensions of a conjecture due to Alspach, Mason, and Pullman from 1976. This conjecture concerns edge decompositions of tournaments into as few paths as possible. There is a natural lower bound for the number paths needed in an edge decomposition of a directed graph in terms of its degree sequence; the conjecture in question states that this bound is correct for tournaments of even order. The conjecture was recently resolved for large tournaments, and here we investigate to what extent the conjecture holds for directed graphs in general. In particular, we prove that the conjecture holds with high probability for the random directed graph \(D_{n,p}\) for a large range of p.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.