Abstract
Paternally inherited inactivating mutations of the GNAS gene have been associated with a rare and disabling genetic disorder, progressive osseous heteroplasia, in which heterotopic ossification occurs within extraskeletal soft tissues, such as skin, subcutaneous fat, and skeletal muscle. This ectopic bone formation is hypothesized to be caused by dysregulated mesenchymal progenitor cell differentiation that affects a bipotential osteogenic-adipogenic lineage cell fate switch. Interestingly, patients with paternally inherited inactivating mutations of GNAS are uniformly lean. Using a mouse model of Gsα-specific exon 1 disruption, we examined whether heterozygous inactivation of Gnas affects adipogenic differentiation of mesenchymal precursor cells from subcutaneous adipose tissues (fat pad). We found that paternally inherited Gsα inactivation (Gsα(+/p-) ) impairs adipogenic differentiation of adipose-derived stromal cells (ASCs). The Gsα(+/p-) mutation in ASCs also decreased expression of the adipogenic factors CCAAT-enhancer-binding protein (C/EBP)β, C/EBPα, peroxisome proliferator-activated receptor gamma, and adipocyte protein 2. Impaired adipocyte differentiation was rescued by an adenylyl cyclase activator, forskolin, and provided evidence that Gsα-cAMP signals are necessary in early stages of this process. Supporting a role for Gnas in adipogenesis in vivo, fat tissue weight and expression of adipogenic genes from multiple types of adipose tissues from Gsα(+/p-) mice were significantly decreased. Interestingly, the inhibition of adipogenesis by paternally inherited Gsα mutation also enhances expression of the osteogenic factors, msh homeobox 2, runt-related transcription factor 2, and osteocalcin. These data support the hypothesis that Gsα plays a critical role in regulating the balance between fat and bone determination in soft tissues, a finding that has important implications for a wide variety of disorders of osteogenesis and adipogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.