Abstract

Intergenerational effects from fathers to offspring are increasingly reported from diverse organisms, but the underlying mechanisms remain speculative. Paternal trans-generational immune priming (TGIP) was demonstrated in the red flour beetle Tribolium castaneum: non-infectious bacterial exposure of fathers protects their offspring against an infectious challenge for at least two generations. Epigenetic processes, such as cytosine methylation of nucleic acids, have been proposed to enable transfer of information from fathers to offspring. Here we studied a potential role in TGIP of the Dnmt2 gene (renamed as Trdmt1 in humans), which encodes a highly conserved enzyme that methylates different RNAs, including specific cytosines of a set of tRNAs. Dnmt2 has previously been reported to be involved in intergenerational epigenetic inheritance in mice and protection against viruses in fruit flies. We first studied gene expression and found that Dnmt2 is expressed in various life history stages and tissues of T.castaneum, with high expression in the reproductive organs. RNAi-mediated knockdown of Dnmt2 in fathers was systemic, slowed down offspring larval development and increased mortality of the adult offspring upon bacterial infection. However, these effects were independent of bacterial exposure of the fathers. In conclusion, our results point towards a role of Dnmt2 for paternal effects, while elucidation of the mechanisms behind paternal TGIP needs further studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.