Abstract

BackgroundComplete rupture of the cranial cruciate ligament (CrCL) in dogs causes profound disturbance to stifle joint biomechanics. The objective of this study was to characterize the effects of cranial cruciate ligament (CrCL) insufficiency on patellofemoral (PF) kinematics in dogs during walking. Ten client-owned dogs (20-40 kg) with natural unilateral complete CrCL rupture were included. Dogs underwent computed tomographic scans to create digital bone-models of the patella and femur. Lateral projection fluoroscopy of the stifles was performed during treadmill walking. Sagittal plane PF kinematics were calculated throughout the gait cycle by overlaying digital bone models on fluoroscopic images using a previously described 2D-3D registration technique. For acquisition of kinematics in the contralateral (control) stifle, fluoroscopy was repeated 6-months after stabilizing surgery of the affected side. Results were compared between the pre-operative CrCL-deficient and 6-month post-operative control stifles.ResultsCraniocaudal PF translation was similar between CrCL-deficient and control stifles throughout the gait cycle. The patella was more distal and positioned in greater flexion throughout the gait cycle in CrCL-deficient stifles when compared to the control stifle at equivalent time points. There was no significant difference in PF poses between CrCL-deficient and control stifles at equivalent femorotibial flexion angles; however, common femorotibial flexion angles were only found over a small range during the swing phase of gait.ConclusionsCrCL insufficiency altered PF kinematics during walking, where the changes were predominately attributable to the femorotibial joint being held in more flexion. Abnormal PF kinematics may play a role in the development of osteoarthritis that is commonly observed in the PF joint CrCL-deficient stifles.

Highlights

  • Complete rupture of the cranial cruciate ligament (CrCL) in dogs causes profound disturbance to stifle joint biomechanics

  • The effects of CrCL insufficiency on stifle motion have been well characterized for the femorotibial joint, where both bench-top and in-vivo studies have shown that marked cranial tibial subluxation occurs during weight-bearing [1,2,3,4,5]

  • All affected stifles were treated by tibial plateau leveling osteotomy (TPLO), as previously described [24]; PF kinematics following TPLO treatment will be described in a separate report

Read more

Summary

Introduction

Complete rupture of the cranial cruciate ligament (CrCL) in dogs causes profound disturbance to stifle joint biomechanics. The objective of this study was to characterize the effects of cranial cruciate ligament (CrCL) insufficiency on patellofemoral (PF) kinematics in dogs during walking. Complete rupture of the cranial cruciate ligament (CrCL) in dogs causes profound disturbance to stifle biomechanics. The effects of CrCL insufficiency on stifle motion have been well characterized for the femorotibial joint, where both bench-top and in-vivo studies have shown that marked cranial tibial subluxation occurs during weight-bearing [1,2,3,4,5]. While femorotibial instability is usually considered the predominating cause of lameness and discomfort, there is increasing interest towards understanding the pathomechanics and clinical relevance of PF joint abnormalities associated with CrCL rupture. Patellofemoral pain is common in humans, and may be a significant contributor to suboptimal limb function following anterior cruciate ligament reconstruction; in one study, the severity of PF osteoarthritis was found to be a better predictor than femorotibial osteoarthritis for outcome after

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call