Abstract
Rigid ceramic filters have emerged as the most promising technology for cleaning of hot gases due to their resistance to attack by aggressive gases and high temperatures. Their potential may be further extended by using them in combination with injection of a dry sorbent to remove acid gases and other chemical contaminants. A crucial factor in their successful utilisation is the ability of the cleaning pulse to remove the deposited cake effectively from the filter surface. In this study, laboratory experiments have been carried out using a single ceramic candle filter. The non-steady-state behaviour of the filter in the initial period of filtration was followed. ‘Patchy’ cleaning of the filter was observed and is consequently identified as the major cause of the inefficiency of filter cleaning indicated by the measured residual pressure drops. A simple correlation has been proposed to determine the cleaned fraction from pressure differences as a measure of the efficiency of cleaning. The conditioning curves have been successfully simulated using a recently developed probabilistic model and it has been shown that the model can also be applied to simulate the experimental results obtained in a pilot plant operating at high temperatures. The modelling results are consistent with the experimental observation that patchy cleaning with a thin residual dust layer in the cleaned areas can explain the conditioning behaviour.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Chemical Engineering Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.