Abstract

The membrane protein, Patched, plays a critical role in patterning embryonic and imaginal tissues in Drosophila. patched constitutively inactivates the transcription of target genes such as wingless, decapentaplegic, and patched itself. The secreted protein, Hedgehog, induces transcription of target genes by opposing the Patched signaling pathway. Using the Gal4 UAS system we have overexpressed patched in wing imaginal discs and found that high Patched levels, expressed in either normal or ectopic patterns, result in loss of wing vein patterning in both compartments centering at the anterior/posterior border. In addition, patched inhibits the formation of the mechanosensory neurons, the campaniform sensilla, in the wing blade. The patched wing vein phenotype is modulated by mutations in hedgehog and cubitus interruptus (ci). Patched overexpression inhibits transcription of patched and decapentaplegic and post-transcriptionally decreases the amount of Ci protein at the anterior/posterior boundary. In hedgehogMrt wing discs, which express ectopic hedgehog, Ci levels are correspondingly elevated, suggesting that hedgehog relieves patched repression of Ci accumulation. Protein kinase A also regulates Ci; protein kinase A mutant clones in the anterior compartment have increased levels of Ci protein. Thus patched influences wing disc patterning by decreasing Ci protein levels and inactivating hedgehog target genes in the anterior compartment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.