Abstract

Patch-clamp studies have been employed in order to check whether the assumption of a multi-ion single-file pore is necessary for the explanation of the anomalous mole fraction effect or whether this effect can also be explained by a single-barrier enzyme kinetic model. Experiments in the cell-attached configuration were done on the tonoplast membrane of cytoplasmic droplets of Nitella in solutions containing 150 mol m-3 of K+ plus Tl+ with seven different K+/Tl+ ratios. At first sight, the results seem to support the multi-ion single-file pore, because apparent open channel conductivity displays the anomalous mole fraction effect, whereas open-probability has not been found to be dependent on the K+/Tl+ ratio. Changes in open probability would be expected for a single-barrier enzyme kinetic model with a lazy state. On the other hand, the lazy-state model is more successful in explaining the measured I-V curves. The entire slope of the apparent open channel current-voltage curves rotates with changing K+/Tl+ ratios in the whole voltage range between -100 and +80 mV. Numerical calculations on the basis of multi-ion single-file pores could create the anomalous mole fraction effect only in a limited voltage range with intersecting I-V curves. The apparent absence of an effect on open probability which is postulated by the lazy-state model can be explained if switching into and out of the lazy state is faster than can be resolved by the temporal resolution of 1 msec.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call