Abstract

Whole-cell patch-clamp recordings were obtained from 116 freshly dissociated neuronal somata from the optic lobe of adult locusts (Schistocerca gregaria). Prerequisites were a papain treatment and the directed transfer of somata to the recording chamber by dabbing. Of the recorded somata, 65 were from lamina and 51 from other optic lobe neurons. All somata supported voltage-activated outward currents and some (24% of optic lobe, 3% of lamina neurons) also fast inward currents. Most lamina neurons supported an outward current that activated (V1/2=−8.5 mV) and inactivated rapidly and a sustained outward current. Some lamina and most optic lobe neurons expressed only a sustained outward current (V1/2=−9.4 mV). GABA and histamine elicited inward currents at negative holding potentials. Most optic lobe (95%) but only 18% of lamina neurons showed a γ-aminobutyric acid (GABA) current, whereas a similar percentage of optic lobe (50%) and lamina neurons (67%) expressed a histamine current. Both currents reversed near the chloride equilibrium potential, were reversibly reduced by picrotoxin, and did not show rundown. Thus, they likely represent chloride currents mediated by ionotropic receptors. Our data indicate that the lamina neurons recorded mainly represent monopolar cells postsynaptic to histaminergic photoreceptors. The optic lobe neurons, on which GABA and histamine apparently act as inhibitory neurotransmitters, are more heterogeneous.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call