Abstract
Most existing image denoising methods assume to know the noise distributions, e.g., Gaussian noise, impulse noise, etc. However, in practice the noise distribution is usually unknown and is more complex, making image denoising still a challenging problem. In this paper, we propose a novel blind image denoising method under the Bayesian learning framework, which automatically performs noise inference and reconstructs the latent clean image. By utilizing the patch group (PG) based image nonlocal self-similarity prior, we model the PG variations as Mixture of Gaussians, whose parameters, including the number of components, are automatically inferred by variational Bayesian method. We then employ nonparametric Bayesian dictionary learning to extract the latent clean structures from the PG variations. The dictionaries and coefficients are automatically inferred by Gibbs sampling. The proposed method is evaluated on images with Gaussian noise, images with mixed Gaussian and impulse noise, and real noisy photographed images, in comparison with state-of-the-art denoising methods. Experimental results show that our proposed method performs consistently well on all types of noisy images in terms of both quantitative measure and visual quality, while those competing methods can only work well on the specific type of noisy images they are designed for and perform poorly on other types of noisy images. The proposed method provides a good solution to blind image denoising.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.