Abstract

Abstract. A system of sand talus cones in a small forested rocky sandstone area was investigated to determine the importance of disturbance‐related dynamics and mesoclimate to vegetation differentiation. These cones (usually 3–12 m long) are formed by the accumulation of sand at the foot of sandstone rocks and are subject to frequent disturbance by the transport of sand. Vegetation was recorded both at the whole‐cone level and at the within‐cone level; the latter was approached by means of a transect of small squares along each cone. Soil profiles were recorded at the upper, centre and bottom parts of the cones. To express mesoclimatic differentiation among the cones within the rocky area, the potential insolation was calculated from the horizon angular height and the likelihood of thermal inversions was estimated by the height of the cones above the valley bottom.The major environmental factor correlated with variation in cone vegetation is the disturbance dynamics as determined by the structure of the soil profile; active cones (with sand at the surface) are colonized by different species as compared with non‐active cones (with surface covered by humus sediments). There is a clear primary succession gradient from plants able to cope with continuous sand transport to stands of tall bryophytes, small shrubs and herbs. Quite often the same gradient is found within cones, with late successional vegetation confined to the lower, stabilized parts of the cones, while the upper part is still being affected by sand transport. The differentiation along the gradient of disturbance is much stronger than the differentiation due to climatic or other gradients.Indirect data indicate that the long‐term average rate of sand accumulation is ca. 1 mm/yr. If sand transport ceases, Sphagnum peat accumulates on some of the cones; the depth of accumulated Sphagnum remains may reach 50 cm. The development of the peat layer is but weakly correlated with the measured variables suggesting that random processes at the beginning of Sphagnum establishment may be a driving force. By measuring Sphagnum growth and decomposition, and the peat density, we estimated the time needed for their development to be several hundreds of years.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call