Abstract

Whereas the inhibitory innervation of the deep extensor abdominal muscle in crayfish is mediated by a weakly acting common inhibitor, the opener muscle exhibits a stronger inhibition. In the present study the most abundant γ-aminobutyric acid-activated chloride channel on distal fibers of crayfish opener muscle was characterized by measuring the current responses after applying pulses of γ-aminobutyric acid to outside-out patches. The results were compared to those obtained earlier with the chloride channel on the deep extensor abdominal muscle of the same species. The double logarithmic plot of the dose-response relationship had a slope of n H = 2.2 in contrast to n H = 5.3 for the channel on the deep extensor abdominal muscle. The rise time of the current response declined to 1 ms at a γ-aminobutyric acid concentration of 50 mmol · l−1. With lower concentrations the rise time increased to a maximal value of 280 ms. No peak of the rise time at low γ-aminobutyric acid concentrations, as observed for the channel on the deep extensor abdominal muscle, was obvious. The open and closed times were similar to those of the channel of the deep extensor abdominal muscle. Different reaction schemes were discussed to describe the kinetics of the chloride channel of the opener muscle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call