Abstract

Transcranial magnetic stimulation (TMS) has proven to be an invaluable tool both in clinical practice and basic brain research. However, many concomitant effects of TMS are still incompletely understood, including thermal effects induced by TMS. The present study investigated how thermal effects induced by magnetic stimulation influence the properties of the spontaneous excitatory postsynaptic current (sEPSC) of hippocampal CA1 pyramidal neurons. We have demonstrated that a 50-Hz low-frequency electromagnetic field with intensities of 7, 14, and 23 mT can induce thermal heating in artificial cerebrospinal fluid(aCSF) from 25 to 40?C over a period of 15 min. We also report that the thermal effects induced by TMS directly influence the properties of sEPSC in hippocampal CA1 pyramidal neurons. Double measures were taken to control the temperature across experiments in order to ensure the accuracy of the temperature measurement of the aCSF. These novel findings provide important insight into the thermal effects induced by TMS as well as their consequences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.